INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 1253-1270 (1997)

A THREE-DIMENSIONAL EXPLICIT ELEMENT-FREE GALERKIN
METHOD

T. BELYTSCHKO* P. KRYSL? AND Y. KRONGAUZ3

ICivil and Mechanical EngineeringCivil Engineering,®Theoretical and Applied Mechanics, Northwestern University,
Evanston, IL 60208, U.S.A.

SUMMARY

The formulation and implementation of a three-dimensional meshless method, the element-free Galerkin (EFG)
method, are described. The formulation is intended for dynamic problems with geometric and material non-
linearities solved with explicit time integration, but some of the developments are applicable to other solution
methods. The mechanical formulation is posed in the reference configuration so that the shape functions and their
derivatives need to be computed only once. A method for speeding up the calculation of shape functions and
their derivatives is presented. Results are presented for sloshing problems and Taylor bar impact problems,
including an impact problem in which the bar impacts with an angle of obliqL997 by John Wiley & Sons,
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1. INTRODUCTION

The implementation and application of a meshless method, the element-free Galerkin (EFG) method,
for three-dimensional dynamic problems with explicit time integration are described. EFG is a
meshless method in the sense of the definition given Bat©at al:' the approximation is
constructed entirely in terms of a set of scattered nodes without recourse to any elements or zones.
The advantages of meshless methods are manifold: (i) the need to generate a mesh of nodes and
elements is eliminated—only nodes need to be scattered in the solid, which is generally much easier;
(i) the treatment of moving discontinuities such as cracks and shocks is facilitated, since no new
mesh needs to be constructed as in finite element methé@urrent work in these methods also
shows many potential advantages: (i) certain types of locking tend not to be as pronounced as in low-
order finite elements, e.g. volumetric locking seldom appears; (ii) adaptivity is far easier to
implement; (iii) it is easier to enrich approximations with closed-form solutions, such as near-tip
crack fields. For these reasons, considerable interest has developed in meshless methods in recent
years. Reviews of these methods have recently been written by Duarte antiabdeBelytschkaet
al.,” so we will not summarize the literature here.

This paper is concerned with the implementation of EFG for three-dimensional dynamic problems
with explicit time integration. Since the simulation of problems with explicit time integration usually
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1254 T. BELYTSCHKO, P. KRYSL AND Y. KRONGAUZ

requres mary time steps,the cost per time step should be kept as low as possibe. We descibe
sevenl steps we have taken to minimize the computation time: (i) the implementation of the
equatonsin a materid settingsothatmostof the shapefunctionsareonly computedat the begiming
of the calculaton; (ii) the useof a backgroundmesh for volumeintegrationsin conmbinationwith a
low order of quadratue; (iii) an empiricd optimizaion of the domainsof influence of the weight
functions so that a reasonald tradeoff is achievedbetwea accuracyand speed

The paperis orgarized asfollows. In Secton 2 we describethe governingequatissin areference
(or materal) setting. Section 3 descibes the geneation of the appraimation functions and their
derivatives in the EFG procedure A method for constucting the appraimation functions is
descibed. Although the EFG appraimations areusuallyderivedfrom the concept of a moving least
squaesapproaimation, we will heredescrile a methodwhich is basedn ensuringthe consistencyof
the approimations. The consiséncyis imposal by modifying a kernd by a linear combindion of
four vectorswhich exactlysatisfylinear consisency.The apprachyields anapproaimation which is
idertical with that generatecby moving leastsquaes but leadsto more efficient formulae for the
derivatives.

In Secton 4 we descibe the implementaton of the EFG procedurethe generationof the element
backgound medh, coupling to finite elements, etc. Section 5 presentssone results of three-
dimensond calcultions. Two problemshave beenseleced: the Taylor impact problem and fluid
sloshing. For the latter some two-dimensonal calculationsarealso reported.n the Taylor problema
newvariantis propogdin which anangke of obliquity is included in theimpactsothattheresmpnseis
not rotationdly symmetric. We concludewith some remaks on the perfamanceof the methodand
suggesons for future work.

2. GOVERNING EQUATIONS
Kinenatics

We considera threedimensonal body Zwhich is an opensetin the EuclideanspacelR". The body
conssts of materid points X. The material points can be identified with co-ordnatesin a fixed
Cartesiansysem, with basisvectorse,, k =1,2, 3, in areferanceconfiguraton A i.e.the materid
point X is identified with the positionvecior X =Y ; X,e,. The Cartesianco-omdinatesysteme; will
be usedexclusiely, bothfor thereferenceandfor the currentconfigurations Becaus of the fact, the
distinction betwea covariant and contravariantcomponentsis superfluous.

Themotion of thebody Ais descibedby themamping X, X :X(X, t), where x is the co-ordnateof
the mateial point X in the currentconfigu@tion, X =x,e;.

The velocity and accelerabn of a materid point are obtainal by materal differentiaton with
resgect to time asv(X, ) =dx(X, )/d anda(X,s) =FX(X,)/d?. The deformation gradientF is
defired by usingthe operatorV’ =(a(-)/dx, Je; asF =V’ @x=(3);/dx,)e; Re;.

Conrservationequatiors

We aredealingwith a purely medanicaltheay of continuais media.The basicequatimsarethe
consevation of mass,

P =pdet F, (1)
and energyconsevation,

P =% ©
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ELEMENT-FREE GALERKIN METHOD 1255

where & is the internal energyper unit mass, P is the first Piola—Kirchhoff stresstensorand the
operdor ‘.’ is a simultaneouscontaction on both indices defined for tensorsp =pe; Qe; and
q =q,& ®ej asp : q =pj;q,;- The conservapn of linear momentun gives

Pa=pb+V -P, ®3)
where b is the body force per unit mass,andthe consevation of anguar momenum yields
F+PT=P-F". @)

The govening systemof equatons is conmpleted by constitutve equationswith apprgriate strain
measures.

Boundaryand initial conditions

The bounday condtions can be specifiedas any combindion of prescribeddispla@mentson

3%,
uX,)=u(x,s), X edA, ()
and prescribedractionson 04,
P(X,7)*n°(X) =t(X), X €I, ()

where 3% and 34 correspad to disjoint subsés of the bounday 04,04 =3 % | |04 .
The soluion is soughtgiven theinitial condtions,which specifytheinitial velocity andstresgsin

B, ie.
v(X,0)=v(X), X€Z, 7)

P(X,0) =P(X) =0(X,0), X X, ®)

where O is the Cauchystresstensor,which in the reference configurationis idertical with the first
Piola—Kirchhof stresstensr.

Virtual work principle

The discreteformulation is obtainedfrom the weak form, the principle of virtual work. It canbe
staed on the referenceconfiguation 0 (i.e. in the matefal setting)in terms of the depenent
variable u € % andthe first Piola—Kirchhoff stresstensorP as

J%poa'&dV:Jj%)ﬁ)b°&dV—I@P:V®&dV+JM&‘tdA, ©)

where 4 is the referencedomain, ¢ is the mass densty in the referencedomain,a is the materid
accderation and u €%, is the virtual displacenent, with % ={u|u(X,7) €C°,u(X,) =u for
X € 3P} and %, ={ulu(X) €, u(X) =0 for X € I A}.

Elenment-freeGalerkin approxmation

The motion paranetersof the materid point X, i.e. the current co-ordnate x (or displacenents
u =x —X), velocity v andaccele@ation a, areapproximagedin the EFG methodby using the moving
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1256 T. BELYTSCHKO, P. KRYSL AND Y. KRONGAUZ

least square5 shapefunctions ¢)(X) as

u(X, 1) =" X 0) (10a)
VX, 0) =3 <N, @), (10b)
a(x, ) =y~ 4 (X)), (10c)

We wish to stressthatu,, v, anda; arenot the nodalvalues of dispacenents(velocities, etc), but
rathernodal paraneterswithout a direct physicalinterpretation,becase the shapefunctions (h(x)
produe appraimation, not interpolation.

The partial derivativeswith respectto the referencingco-ordinatesX, areobtaina simply as

M) =5 009, (1)

Substitutionof (10a)and(11)into (9) givestherelationsfor the massmatrix andinterral forcesas

ownt = %P:V) ®dudy :Z&J, - fint] (12a)
ext — [ . o 40 J— o fEXt

o =( o auw+JmaJ tad =y, 17, (12b)
0K = ;})ﬂ’a -udy :Z&J, ‘M, *a,. (12¢)

3. CONSISTENCY APPRQACH TO MESHLESS APPROXIMATI ONS

Although the calculationsreportedhere deal with homogeneos bodies with smoothsolutions, the
EFG implementationdescibed hereis eventudly aimed at problemswith moving discntinuities
suchasshocksor cracks.Therdore, evenfor atotal Lagrangianformulation, recalalation of sone of
the shapefunctions and their derivaives is unavoidabé. We descibe here a methoddogy that
streanfines the calcultions.

The EFG appraimationis formulatedin termsof the moving leastsquaesapproximaion (MLS),
butfor purpoesof fastderivaive evaluaton it is convenentto describat asa consistenversionof a
locdized approaimation; the final resultis idertical with the MLS appraimation.

Corsidera weight function with compactsuppot w(X —X;) =w,(X) associed with nodel. We
wish to compute the shapefunction ¢ (X) so asto be able to write an approimation to a function
u(X) in the form u(X) %? ¢ (X)u;. Sincewe intend to use the shapefunctionsin a Galekin
procalure for a secoml-order problem, we require the linear consisency equationsto be saisfied.
Theseconsistencyconditionsare automadically satisfial if

Z G(X)=1 and Z XX, =X. (13)

The sumin (13) is over those nodeswhosedomainof influenceincludes X.

We will constru¢ the shapefunction from the weight function w,(X) by multiplying the weight
function by a correcton function’™ and by enforcing the consisency conditions (13). Thus we
choosefor the shapefunction the form

B (X) =CX)w,(X), (14)
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ELEMENT-FREE GALERKIN METHOD 1257

where C(X) is the correction function. The correctian function will be soughtin the form

c(x) =a(x)'g(x,), (15)
where g(X) is a column matrix of mlinearly independenfunctions(m =>4 for 3D domains)anda is a
column matrix of m coeficients. The functionsg can be chose to improve approimations; for
exanple, Fleming et al.'° have recently usedfunctions correspading to the asympbtic crak tip
field. Sincein geneally theremay be morefunctons g; thantherearelinear consisency conditions,
equatons (13) will be complded to represat reproduchility condtions of the m functions g(X) :

¥ H0ux) =g(x). 16)

It is obvious that g(x) shouldinclude 1,X,Y and Z to be able to satisfy the linear consistency
requrements.The consistencycondtions (13) can also be viewed as reproduciblity condtions for
1,X,Y andZ

The unknown coefficients a can be solvedfor us by usingthe reproducbility conditionsof the
functions g(X), i.e. substituing (14) and (15) into (16) gives

3000 5" (¢ ) =9(X). ()

Equation (17) can be castin a form identical with that arrived at by the moving least squares
technique (comparee.g. with Referencer), i.e.

Z Z Wy (X)gi (XI )gj (X1 )aj (X) ==& (X) (1 8)

A(X)a(x) =g(X), (19)
where A is given by

4, = Z Wi (x)gi (xl)gj(x[)' (20)

The matrix A is symmaeric andpositive definite andis often called the momentmatrix. The explicit
expressionsof (14) and (15) andof the matrix A canbe written for a linear basisin one-,two- and
three-dimen®mnal problemsrespectivly as

d)/(X) =lao(¥) +a; (O, Jw (x), (21a)
A=) =T, an
A,X(X):ZW],X( A, (210)

d)[(x) = [ao (X) ~+a, (X)XI ~a, (X)Y I]WI (X), (223)
A(X)= Z w, (A, (22v)

1 X, Y
A=X X XY (22¢)
Y, Xy, Y?

A,i(x) = Z Wy ,1(X)A1 (22(1)
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1258 T. BELYTSCHKO, P. KRYSL AND Y. KRONGAUZ

and

le (X) = [“0 (X) ~+a, (X)XI +a, (X)Y | tas (X)Z[]WI (X)’ (233)
1 X, Y oz
X, X} Xy, Xz
Y, XY, Y Yz
Z XiZp Yz, 7t

A,i(x) - Z W[,i(X)AI . (23C)

The shapefunction canbe conmputedat a given point X by solving (19). The shapefunctions are
thenwritten by combining (19) with (15) and (14) as

() =[A™ COFCT alX Jw, (X). (24)
The abovederivatim is closely relatedto the procedureof imposingreprodicing condtionsby means
of a correcton function as propogd by Liu etal.®
The matrix inversionin (24) is to be understoodsynbolically; the matrix A is factorized eitherby
LU or by QR deconposition. The derivativesof the shapefunctions are calculatedby an approach
descibedin Referencell which speed up the computdions. The requiral equatims areobtaned by
differentiatng (14) and by noting that the differentation of (19) yields

A(X) = Z WI(X) :Z WI(X)AI ) (23b)

Aa+Aa; =g, (25)
where g ; denotesdz /dX;. Thus we can obtain the derivaives of a; by soling
Aa; =g, —A a. (26)

For this purpo® thefactolizationof A conputedwhensolving(19) canbe reusedsothe computation
of the derivativesinvolveslittle extracomputation.

The savirgs in the computation times recordedby the authors for the constrution of the EFG
shapefunctionscanbe appraimately 50%in two-dimensionalproblemsandevenmorein 3D cases.
The initial computaion of the shapefunctionsat all integrationpoints,which include the searchfor
the nodeswhich influencea given quadratue point, is about15 timesas expeng/e as an explicit
updae for an elastic matefal. The savingsachievedby the presented techniqueare therebre
sigrificant.

4. IMPLEMENTATION OF THE EFG PROCEDURE
Central differencetime steppiry

To advane the soluion in time, we ha}ve chosenthe central differenceschemein the classical
form.*? In the nth step, given velocities u,_, , =u(t, —A,¢/2) and displa@mentsu, ; =u(z,;)
(with the variable time stepA,r =(A,4, ot +A, ,1)/2):

1. Calcuate velocities at time #, +A,¢/2:

":In-H/Z :un—l/Z +AM - (e —fm).
2. Calcuate dispacemers attime ¢, ; =1, +Az:

Uy =4, +A0, 4 5.
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ELEMENT-FREE GALERKIN METHOD 1259

The symbolsin the aboveformulaeare M, the mas matrix (constat anddiagonal),u, and u,, the
vecborsof disgacenmentsandvelocitiesrespedvely, f, the external loads,andf!™, the nodal forces
corresponéhg to the stressesall at time stepn.

Stabk time step

The stable time stepcanbe computel for an elastic isotropic materid undersmall deformations
(this stability estmate is usualy appied also to finite deformations) from the smallestdistance
betwee nodes,d, ;,, over the speedof a dilataional wave, ¢ =\/{E/p(l —2v)] (E is the Young
elastic moddus and Vv is the Poissonratio), resultingin

& <c/dmin' (27)

The penaty enforcemenhof contactwhich is usedin the impact problemsdiscussedelor reduces
the steble time step.

Couwpling to finite elemats

The EFG shapefunctionscanbe modified to mimic ordinay finite elemen shapefunctionson the
bourdary of the EFG domain®* Thus one can either enforce essentiabounday condtions aswith
regulr finite elements or, aswill be denmonstratedbelow, one can usethis featue to coupk EFG
domans to finite elementsin a single computationalmodé.

The basicideais to modd the EFG domainasa finite element,or ratherasa superelementsince
thereareinternaldegreef freedominvolved The EFG super-elemantinteracts with therestof the
med throughfinite elementnodedocatedat the interfacesbetwea the EFG doman andthe adjacent
finite elemants. An exampe of the incorpomtion of an EFG super-ekmentis given in Figure 1. The
couping techniqie requiresthat EFG nodesbe placedat the vertices of the integrationcels at the
interface betweenthe super-elerant and othe finite elements. TheseEFG nodesthen havea dual
idertity: theyareboth EFG nodes(asseenfrom the point of view of the EFG domain)andFE nodes
(asseenfrom the point of view of the adjacenffinite element} (they are markedin Figure 1 by both
crosesand circles) In wha follows, the EFG nodeswhich are not involved in the couping are
denoedaspureEFG nodes(thesearemarkedby crossesonly). Theintegration cellswhich haveone
or more dual FE/EFG nodes at their verticesare called interface cells. The shapefunctions are
modified in theinterfacecellsto betheregularFE shapefunctions at a partof thecell bounday. One

o finite element node
x EFG node

1

Figure 1. EFG super-elemenin an FE domain
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1260 T. BELYTSCHKO, P. KRYSL AND Y. KRONGAUZ

importantimplication of thisis thatthe shapefunctionsin theinterior of theinterfacecellsareablend
of finite-elenentand EFG shapefunctions.

The EFG superelementdefinesthe momenum equatioms at the pure EFG nodesaslocal. In other
words, it hides theseequatons from the restof the computationalmodel. Theseequatons needto be
advaned in time, however, and the simple loops over finite elementsand finite elementnodesto
updat the configuration,compute the internal forces, etc. mug be augnentedby loops over super
elementsto allow themto performthe needel operdionson their locd (private)degreesf freedom.
Thus, for exanple, the effecive nodalforcesin the centraldifferencealgarithm arein ordinar finite
elementprogmammescomputal in an element loop suchas

FOR(all loads L in dormain D) {assenble_ext_loads(D, L);}
FOR(all elerents E in domain D) {assenble restoring forces(D, E);}

Progammesimplementingsuper-elerantsshouldaugmentthe code of the abovefragmentby

FOR(all super-elements SE in domain D) {calc_eff loads(D, SE);}

to allow the super-elerant to assembleextanal and restoing forces correspondingto the internal
degress of freedomof the superelement.

Discretizatian of the EFG doman

Geanetry approxmation. The geomety of the EFG domainin the preentwork is appraximated
by a collecion of hexahelral cells. The FE/EFG couping requires that cells placed along the
bourdariessharedwith finite elements(so-callel ‘interfacecels’) be compatible with the adjacent
finite elements. Othemwise the geometic subdivisioninto cells is quite arbitrary. Thusthe cells may
be generatd e.g.by octrees multiblock meshgeneratoror directly from the geometic components
consttuting a CAD model.

Placementof EFG nodes. The nodesare geneatedindependatly of the integrationcells, with the
exceftion of the interfacecells wherethe EFG nodesmug be presentat the verticesto definethe
ramp function**

Volumeintegrals.Thevolume integrals(massmatrix, restoing forces)areobtainedby usingeither
regubar Gaussan quadratue or special two-pant diagmal quadaturé® at the Gauss points
f,- :—1/ and 1/ . Our experiance with the quadature schemesuggestghat a lower order-
guadature(one-pant or 2 X2 X2 in hexahelral cells)with smaler cellsmaybe preferableto larger
cells with high-orderquadature.The reasorseemdo be the quite complicatedvariation in the shape
function derivatives,which makes it difficult to integratethem by the usual high-order Gaussian
quadature.

Surface integras. The surfaceintegrals(load, contacts)are evaluatedindependatly of the cell
strucure.

Sizeof the doman of influence.The choice of the sizes of the suppots (domainsof influence)is
quite crucial. Fromthe point of view of the computaion coststhe suppots shouldbe choserassmall
aspossile, sincethe time to compue any kinemaic quantity (deformaion gradiens, straintensrs,
etc) is proportiona to the numter of nodesaffectingeachintegration point. Forexample jn aregular
cubic grid with spacihg a in eachdirection theradii of circular domans of influence arechose to be
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ELEMENT-FREE GALERKIN METHOD 1261

a multiple of the lengthof the diagonalof the cube, . Aa. Theintegration cells arethe cubeshaving
thenodesasvertices.Theavemgenumkber of nodesatanintegrationpointfor a2 X2 X2 quadratue
is 20for d,,, :\ﬁa, 59for d,, =15 X\/.’aa and124for d,, =2 X\/}»a. The computingtime within
a stepgrows correspondhgly in the ratios 1:2-95:6-2.

Fromthe point of view of accuacy thereis an optimum supportsize.Unfortunatey, the optimum
is not easyto computeand,in addtion, it varieswith the chamacterisics of the problemat hand;see
the discussbn for fourth-order problems by Krysl and Belytsctko.*® The readershoutl realize,
however, that only absolue accuracyis involved, not the rate of convegence.

Mass matix. To exploit the potential speedof the explicit time-steppng technique, the mass
matrix shout be diagonal We havecomputa& the mas matrix by the row sumtechniqie. The mass
matrix of the Ith EFG nodeis a multiple of the unit matrix, M, =M, 1. Because the shapefunctions
of all EFG nodal points affecting a given point sumto one,i.e. 2 (]} =1, the factors M; canbe
computedas

M, = , oo av. (28)

It shouldbe noted thatthe factors M, areindependat of mateial deformation andconsequerty the
mas matrix is constantin time.

Internal forces. The EFG methodseemdo be free of numertal locking both for bendingandfor
almostincompresgble materals suchaslarge-strai plagicity andrubberhyperelastidy. This means
that the kinematic relaions need not be modified in order to avoid it as, for exanple, in finite
elementsintegratedby a redued or selecive scheme(stablized, finite elements)!’ enhancedstrain
finite elements'® etc. This makesthe task of defining a mateial modelfor usewith the EFG super
elementappedingly simple. The kinematic quantities arecomputedby straightbrwardsubsitution of
(10a) and (11) into the apprgriate definition of the kinematic tensor(deformaton gradient rate of
deformation, Green—Lgrangestrain tensor,etc.). Thus the interfacebetwea the integration point
andthe materid modelis very simple andallows for any matefal.

Therestoing forcesarecomputel from equaton (12a) As canbeseen|n orderto beableto usea
particular materialmodd with the EFG domain,the materal modd mustbe able to computeat a

4 EFG DOMAIN R
’ \\
’ \

:' CONTACT SURFACE SEGMEIV
—_ (<

- -— éé

’
~ ’

~
~ -’
s -
S~ -
~o -
Se -

\ LINEAR SPRINGS CONTACT HALF-SPACE

Figure 2. Definition of penetratechalf-spaceasa Winkler foundatbn
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given time thefirst Piola—Kirchhoff stressensor.Theresuting internal forcesareassemble@itherto
the internal equatias for purely EFG nodesor to the globd equatias for EFG/FE nodes.

Material laws. The Taylor barimpactssimulaionsin this paperwerebasedon the assunption that
the mateial is elastoplatic with linear hardenimgy, with the classical/, flow rule. The stressupdate
procedureis basedon the methodof instantaneusfinal rotation of Nagtegal and Veldpaus®

Bending andincompeessibilitylocking. It is awell-known fat thatthe eight-roded,fully integrated,
isoparametricfinite element locks for incompiessiblematerialsand also tends to produceover-stiff
respnsein bending.Previousnumertal experimens indicate thatthe EFG methodis not suscetible
to numericallocking for almostincompresible mateials andis not excessiely stiff in binding?

The EFG shapéefunctionsareof relatively high orderwhenthe supportsarelarger. This makesthe
appraimation less constraind andis probaly the reasonfor the absenceof locking. On the other
hand, it is well known that the EFG shapefunctions resemle the regular finite element shape
functionsfor smallerdomainsof influence,althoughthe finite elementshap&unctionsarein geneal
notrecoweredfor morethanone-dmensionh spacesAs a consequere, onewould exped difficulties
with locking. Howeve, asour numericalexperimens show, this is not the case It canprobaly be
explainedasfollows. Corsideringagainthe aboveregularcubic grid, the smdlest possibleradiusof a
spheical domain of influence is d,, =, Aa; smaller domans of influence usualy give badly
condtioned shapefunctions and it becomesimpossibleto constuct the shapefunctions at some
locations. The resuling appraimation is still much less constraned than for hexaheral, fully
integrated finite elements since an integration points still has 20 neighbouing nodeson average,
whereasthereare only eight neighbous for any integration point in the trilinear finite elements

Locking for largestrain plasticty may actually appea in the interface cells betwea the EFG
subdonain andthe finite elements. The rea®n is thatif a trilinear rampis usedto blendthe finite
element shapefunctions and the EFG shapefunctions, the shapefunctions in the interior of the
interface cells are rathersimilar to the regularfinite element shapefunctions, which are known to
produe an over-stff respnse.

Parallelization. The EFG superelementhas beenintegrated into a finite elementprogramme
which hasbeenpardlelized by the authorsfor workstaton andsupercorputernetworksasdescibed
in Refelence20. The domaindecompotion usedin Reference20 is basedon finite elementsandthe
EFGsuperelementcanbeincludedin thefinite elementmodelwithout any modification.However, it
is possble thata needmight ariseto assignthe EFG domainto morethanoneconputer,e.g.when it
is toolargeto fit ontoa singlemachire. The solution could beto split the original EFG super-elerant
into two or moresuper-elerantsby introducirg interfaces. This is not alwaysfeasiblein largestrain
pladicity with resgectto locking, however; seethe precedng section.

Neverthelesssincethe EFG super-elemntsare currenty more expensse than high-peformance
finite elements, espetally one-pointquadaturestabilized elementsit is assuned herethatthe EFG
domadns will be usedsparingly,i.e. only where their high accuracyand special capabilites are
needel. In that casethe EFG domans can be assuned to be of limited size and the doman
deconpositionbasedon finite elementsmay be consideredapprriate.

5. APPLICATIONS
Sloshing in two dimensons
We consiler the problem of a tank filled with waterthat hasaninitial velocity 2, =1 m s in the
postive x-diredion at time zero. The configuation is shownin Figure 3.
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10m

WATER B=2 10 Pa

p=1000 kg/m® 5m
Vp= 1m/sec
TANK X

Figure 3. Tankfilled with waterwith initial velocity

Thewaterwasmodelledasinviscid, sothe Lagrangianequatia of motion describing the problem
is

D, +0b; =pua;, (29)
where b, =0 and b, =—g. The matefal modé usedis
. K.
p =—p, 30
il (30)
where
p=—pV-v. (1)

The bulk moduus K is 2 GPa.The densty of the wateris takento be 1000 kg/m°.

The problem was solved using 496 nodesand 1800 quadratwe points. An explicit central
difference schemewas used for integration in time. The time step was therebre limited by
condtional stalility; atime stepof 0-2 mswasused.The solutionwasadvaned to 2-8 s by taking
14,0 time steps.Someof the variousintermedate staes are plotted in Figure 4.

Taylor bar impact

The EFG methodwas appled to 3D dynamicproblens of finite stran elastglastic deformation.
The Taylor bar is a classicalbenchnark which consistsof a cylindrical bar impacing a rigid,
frictionless wall.?*?? The contacing surfacesare assumedto remain in contact throughoutthe
simulation. The mateial datacorrespadsto copperandthe computdional modelis classical/, flow
with linear isotropic hardeniy: E=117 GPa, v=0-35, p=8930kg m~—3, h=100MPa,
0,0 =400 MPa. The radius of the cylinder is 3-2 mm and its length is 32-4 mm. The cylinder
moves with a uniform initial velocity of 227 m s™*. The responses computedfor 80 Iss; attheend
of this interval the kinetic energyis almostentirely dissipatel. The monitoreddataarethe radiuson
the plare of impact,the cylinder length and the equivaknt plastic strain.

Normd impact We havesolvedtwo problems.In thefirst theimpactis symmetric with resgectto
theimpactplare. Thusthe modelconsstsof two barsimpactingeachother with the samevelocity in
oppasite directiors. The grid for this simulaton was quite coarse Figure 5 showsthe cross-secion
with integration cells and EFG nodes (as X-markes). Twenty layers of the cells and nodes
consttuted half of the symmetric grid, giving 800 nodes (2400 degreesof freedon) and 480
hexaheral integrationcells for the whole modd. Spherica suppots with a uniform suppot size of
d,, =4 mm were used. The materid resppnsewas computed by the instantaneus final rotation
methodof Section4 at the Gawss points. Onepoint quadaturewas used,with the excepton of five
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(c) (d)

Figure 4. Velocity plots in 2D sloshing problem at 1 =(a) 0-4, (b) 1-2, (c) 2-0 and (d) 2-8 s

layers of cells on each side of the impact plane where 2 x 2 x 2 quadrature was applied to avoid
hour-glassing. The time step was 0-1 us, leading to a total of 800 time steps.

The results are compared here at =280 us with the 3D solution of Hal]quist21 computed by
DYNA3D. The radius at the plane of impact was 6-96 mm (DYNA3D: 7-03 mm) and the length of
the bar was 21:63 mm (DYNA3D: 21-47 mm). Plate 1 shows the deformed grid at ¢ =80 us, with
contours of the equivalent plastic strain in an axial cut, and Figure 6 documents the evolution of the
radius at the impact plane in time.

The second grid for the normal impact was finer; see Figure 7, which shows the cross-section with
integration cells and EFG nodes (as X-markers). Thirty-six layers of the cells and nodes constituted
the full model, leading to 1728 nodes (5184 degrees of freedom) and 1728 hexahedral integration
cells. Two quadrature schemes were used, the first bring the ‘full’ 2 x 2 x 2 Gaussian quadrature and
the second the two-point diagonal quadrature (see Section 4) with 240 integration cells next to the
plane of impact being integrated by 2 x 2 x 2 Gaussian quadrature. Spherical supports with a
uniform radius of d;, = 2 mm were used, leading to an average of 42 (37) EFG nodes involved at an
integration point for eightpoint (two-point diagonal) quadrature. The contact condition at the impact
plane was enforced using a simple penalty technique. The contact type was that of bilaterial
frictionless sliding to emulate the desired no-lift condition. The time step was 3-03 x 10~ 8 s, leading
to a total of 2640 time steps.
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Figure 5. Coarse grid for symmetric variant of normal impact

The results (almost identical for the two quadrature rules) are compared here at r = 80 us with the
3 D solution of Hallquist®! computed by DYNA3D. The radius at the plane of impact was 7-19 mm
(DYNA3D: 7-03 mm) and the length of the bar was 21.36 mm (DYNA3D: 21-47 mm). The
maximum of the equivalent plastic deformation was 3-22 (DYNA3D: 2-96). As can be seen, the finer
grid seems too flexible. However, when the present results are compared with all the available
solutions for this problem, such as those collected by Ponthot,?® it seems that (i) the Hallquist
solutions are rather on the low side (e.g. the mean of the results for the radius from Reference 23 is
7-11 mm) and (ii) the penalty enforcement of the contact condition at the impact plane generated
vibrations, which produced higher plastic deformations (all solutions from Reference 23 were for
finite element models with directly specified sliding boundary conditions).

Oblique impact. The oblique impact differs from the normal case in that the former is a true 3D
problem whereas the latter is usually modelled as axisymmetric. The present simulation was run for
an inclined anvil with slope 1:13, depicted in Figure 8. The contact is unilateral and frictionless,

radius at the plane of impact

P

6 A

radius [mm]
(3]

!

3

0 20-05 48-05 6e-05 8e-05
time [sec]

Figure 6. Evolution of radius at plane of impact for coarse grid
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Figure 7. Finer grid

enforced by a penalty technique. The geometric and material data are, with the exception of the anvil,
identical with those used above.

The response was again computed for 80 us, but in this case the kinetic energy is not zero at this
time, since part of the kinetic energy remains in the sliding ‘down’ the slope. The deformed shape of
the bar is shown in Plate 2 and the distribution of the equivalent plastic strain is depicted in Plate 3.

Sloshing in a water tank

The final example deals with the sloshing in a rectangular free surface tank. The horizontal
dimensions of the tank are 0-2 x 0-2 m? and the depth is 0-1 m. The liquid is assumed to be perfect,
inviscid and compressible. The constitutive equation is used in the hypoelastic form

p(t + At) = p(#) — x det (In U, (1), (32)

where p is the pressure, x is the bulk modulus, which was adopted as constant, x =2-2 GPa, and
U, (?) is the relative Hencky tensor.'

The initial conditions were selected to correspond to a tank moving with a constant uniform
velocity v = {-0-5,-0-2,0} m s~ ! (it is assumed that the contents of the tank are in static
equilibrium corresponding to gravity loading), which is stopped suddenly at ¢ = 0. The boundary
conditions were enforced at the vertical walls and at the bottom using bilateral penalty tractions. The

BAR

SLOPE 1:13

Figure 8. Schematic diagram of oblique impact simulation
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grid was regular, with a spacing of 0-02 m in each direction. Spherical supports were used with a
uniform radius of 0-05 m. The numerical integrations were performed at 10 x 10 x 10 hexahedral
integration cells by 2 x 2 x 2 Gaussian quadrature. The time step was At = 0-00012 s; the simulation
was run for 0-6 s.

The computation is documented in Plate 4, which shows the displaced contents of the tank at
intervals of 0-05 s during the motion.

6. COMPARISON OF COMPUTATION COSTS

Computational cost is one of the major factors affecting the acceptance of a given numerical
technique. The cost should be measured for a prescribed accuracy for a given problem (both in terms
of the rate of convergence and in terms of the absolute error). When finite elements are compared,
this is typically not the case; the costs are usually measured for a given number of degrees of
freedom. While this is acceptable if the accuracy per degree of freedom is of the same order, it
becomes unsubstantiated if this is not the case. The EFG models are in many problems more accurate
than finite element models with the same number of degrees of freedom.

The comparison of EFG and FE techniques based on accuracy measures is currently under
investigation. While there are some preliminary results for 3D elastostatics,’ the dynamic case has not
yet been explored. Therefore we find it instructive to compare the techniques in terms of the degrees
of freedom, although, as pointed out above, the comparison is not necessarily fair to the EFG method.

We have timed solutions to the normal impact of the Taylor bar. The EFG method was compared
with the well-known explicit finite element programme LS-DYNA3D.?* The FE and EFG models did
not contain the same number of finite elements (integration cells), the contact conditions on the
impact plane were enforced differently (deleted degrees of freedom in the finite element case; the
contact algorithm in the EEG model), time steps differed and different material models were used.
These differences were taken into account by appropriate scaling of the measured time as described
below. The measurements were performed on an HP/9000 series 715 workstation.

The LS-DYNA3D computation kernel was written in Fortran 77. The Fortran 77 optimizer on the
workstation used can perform vectorization; the extent to which vectorization has been performed for
LS-DYNA3D is, however, unknown. The programme has been hand-tuned for performance for the
last two decades and is reputed for speed. The solid elements used in the computation are one-point
integrated, stabilized eight-noded hexahedra. Both the volume integration and the material
constitutive law are quite efficient.>* The finite element model for LS-DYNA3D consisted of 972
elements and 3551 degrees of freedom. The target time of 80 us was reached by 2513 steps in 135 s.

The EFG programme was written in the C-language in an object-oriented manner. No hand-tuning
of performance has yet been undertaken, with the exception of a careful programming style to avoid
major inefficiencies. The programme was compiled with the default (conservative) optimization of
the compiler. The performance of optimized C programmes on the workstation is typically 10%-30%
worse than that of equivalent optimized (but not vectorized) Fortran 77 programmes. This is partly
due to a more conservative optimization, which takes into account memory access uncertainties
involved in unrestricted pointer arithmetic of the C-language.

The EFG model was the finer grid for normal impact described in Section 5, i.e. 1728 hexahedral
integration of cells and 5184 degrees of freedom. Two quadrature schemes were considered as stated
in Section 5, namely (i) 2 x 2 x 2 Gaussian quadrature and (ii) the special two-point quadrature rule
of Section 4. Because of the differences in the characteristics of the FE and EFG models (number of
finite elements versus number of integration cells, number of time steps, different formulations of the
constitutive equations), the measured times need to be adjusted. The time measured for the LS-
DYNA3D programme is thus compared with the time measured for the EFG model multiplied by
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these factors: 972/1728 = 0-5625 (to account for the different size of the model), 2513/2640 =0-95
(to account for the different number of time steps) and 0-75 (the material model used in the EFG
programme is more expensive than the model used by LS-DYNA3D, since more kinematic quantities
need to be computed; the reduction factor is only a guess, since the material model of LS-DYNA3D
has not been implemented yet).

The adjusted time used by the EFG programme for the eight-point integration scheme was 7330 s,
i.e. 54 times the LS-DYNA3D timing. The adjusted time used by the EFG programmes for the two-
point diagonal integration scheme was 1477 s, i.e. 11 times the LS-DYNA3D timing. In evaluating
these numbers, let us note the following.

(a) The EFG method is intrinsically more expensive than the FE method. One reason lies in the
fact that typically more nodes are involved in the Galerkin procedure at any integration point.
However, this also makes the EFG method more accurate and removes some unpleasant
conditions of overconstraining, e.g. volumetric locking. Another reason lies in the fact that
connectivity for the EFG method varies from point to point, so that in contrast with the FE
method some compiler optimizations are not available (e.g. loop unrolling).

(b) The EFG programme has not yet been streamlined for performance, e.g. by compiler directives
allowing aggressive optimization or by rewriting critical sections of code in Fortran 77 or
Fortran 90.

(c) The experience we have gained in 3D elastostatics’ indicates that FE models attain the same
level of accuracy with comparable computation times to EFG models, but with four to five
times as many degrees of freedom. In an implicit method such as elastoplastics, stiffness
assembly is a major cost. This operation is proportional to the square of the number of nodes
involved at an integration point. In explicit computations the cost is linearly proportional to the
number of nodes involved at an integration point. Thus the explicit EFG method can be
expected to be less affected by the larger number of nodal unknowns per quadrature point than
the implicit one.

Thus the costs of the EFG method appear comparable with those of finite element models of
similar accuracy. On the other hand, once we consider problems with moving discontinuities, the
EFG method becomes more cost-effective.

7. CONCLUSIONS

The formulation and implementation of a three-dimensional meshless method, the element-free
Galerkin (EFG) method, have been described. The methodology is intended for dynamic problems
with geometric and material non-linearities solved with explicit time integration. We have shown
how to formulate the EFG approximation in the reference (material) setting, which achieves
considerable savings because the EFG shape functions need not be recomputed for each time step.

Although the problems reported here deal with homogeneous bodies, the main field of application
of the presented method is seen in problems with evolving discontinuities such as cracks. In such a
case, some of the shape functions need to be recomputed to account for the developing discontinuity.
Thus a method for speeding up the calculation of shape functions and their derivatives is needed. One
such method, based on the consistency conditions, was presented above. The savings in
recomputations can be more than 50%.

Solutions by the EFG method presented in this work have been reported for two sets of problems.
The first were simulations of large-strain plastic deformation and the second set of results dealt with
fluid sloshing.
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The classical benchmark of Taylor bar impact was solved for both normal impact and oblique
impact. The accuracy obtained was satisfactory when compared with reference solutions. The grid
used for the unsymmetric case was chosen to be finer and a frictionless penalty contact technique was
used. The accuracy of the solution compared well with reference solutions.

To test the EFG method on a truly three-dimensional problem, the Taylor bar formulation has been
modified so that the bar impacts with an angle of obliquity. There are no reference solutions for this
formulation.

All the impact simulations indicate that the EFG method is free of the volumetric locking that
plagues large-strain formulations of finite elements for (almost) incompressible materials (J,
plasticity, hyperelasticity, etc.), which agrees with the findings of Reference 2 for incompressible
linear problems.

The second set of problems dealt with the sloshing of inviscid compressible fluids in tanks with
free surfaces. We have presented a two-dimensional simulation in a large tank and a three-
dimensional simulation in a small, hexahedral tank with oblique initial conditions.

The issue of computational cost of the EFG method was discussed in Section 6. It was shown that
the EFG method can be programmed in such a manner as to be competitive with fast finite element
programmes, especially when compared on the basis of accuracy versus cost.

The EFG method has been shown to be a versatile tool for explicit large-deformation three-
dimensional simulations. This was demonstrated on the Taylor bar impact benchmark and both two-
and three-dimensional free surface fluid motion (sloshing). The method shows promising
characteristics, e.g. the absence of volumetric locking in incompressible materials. The results for
problems of moving discontinuities such as cracks will be reported soon.
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Taylor bar, equivalent plastic strain at 80 usec

Plaze 1. Coarse grid 20 80 psecomds. Deformed shape, cut through the body with contoars of equivalent
plastee stran (ooly one half of the whole gl is plotied)

Plate 2. Deformed shape of the bar (o the oblaque impact 51 80 pseconds



Oblique impact of the Taylor bar, equivalent plastic strain
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Pate 3. History of the distmbution of the equivalent plastic straan for the oblique mgpact

Sloshing in a rectangular tank
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Plate 4. Hastoey of the Biquid motion for the sloshing problem




