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SUMMARY

The formulation and implementation of a three-dimensional meshless method, the element-free Galerkin (EFG)
method, are described. The formulation is intended for dynamic problems with geometric and material non-
linearities solved with explicit time integration, but some of the developments are applicable to other solution
methods. The mechanical formulation is posed in the reference configuration so that the shape functions and their
derivatives need to be computed only once. A method for speeding up the calculation of shape functions and
their derivatives is presented. Results are presented for sloshing problems and Taylor bar impact problems,
including an impact problem in which the bar impacts with an angle of obliquity.# 1997 by John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The implementation and application of a meshless method, the element-free Galerkin (EFG) method,
for three-dimensional dynamic problems with explicit time integration are described. EFG is a
meshless method in the sense of the definition given by On˜ate et al.:1 the approximation is
constructed entirely in terms of a set of scattered nodes without recourse to any elements or zones.
The advantages of meshless methods are manifold: (i) the need to generate a mesh of nodes and
elements is eliminated—only nodes need to be scattered in the solid, which is generally much easier;
(ii) the treatment of moving discontinuities such as cracks and shocks is facilitated, since no new
mesh needs to be constructed as in finite element methods.2–7 Current work in these methods also
shows many potential advantages: (i) certain types of locking tend not to be as pronounced as in low-
order finite elements, e.g. volumetric locking seldom appears; (ii) adaptivity is far easier to
implement; (iii) it is easier to enrich approximations with closed-form solutions, such as near-tip
crack fields. For these reasons, considerable interest has developed in meshless methods in recent
years. Reviews of these methods have recently been written by Duarte and Oden8 and Belytschkoet
al.,7 so we will not summarize the literature here.

This paper is concerned with the implementation of EFG for three-dimensional dynamic problems
with explicit time integration. Since the simulation of problems with explicit time integration usually
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requires many time steps,the cost per time stepshouldbe kept as low as possible. We describe
several steps we have taken to minimize the computation time: (i) the implementation of the
equationsin a material settingsothatmostof theshapefunctionsareonly computedat thebeginning
of the calculation; (ii) the useof a backgroundmesh for volumeintegrationsin combinationwith a
low order of quadrature; (iii ) an empirical optimization of the domainsof influence of the weight
functions so that a reasonable trade-off is achievedbetween accuracyandspeed.

Thepaperis organizedasfollows. In Section 2 we describethegoverningequationsin a reference
(or material) setting.Section 3 describes the generation of the approximation functions and their
derivatives in the EFG procedure. A method for constructing the approximation functions is
described.Although theEFGapproximations areusuallyderivedfrom theconcept of a moving least
squaresapproximation, we will heredescribe a methodwhich is basedon ensuringtheconsistencyof
the approximations. The consistency is imposed by modifying a kernel by a linear combination of
four vectorswhich exactlysatisfylinearconsistency.Theapproachyieldsanapproximation which is
identical with that generatedby moving leastsquares but leadsto more efficient formulae for the
derivatives.

In Section 4 we describe the implementation of theEFGprocedure: thegenerationof theelement
background mesh, coupling to finite elements, etc. Section 5 presentssome results of three-
dimensional calculations.Two problemshavebeenselected: the Taylor impact problemand fluid
sloshing.For the lattersome two-dimensionalcalculationsarealso reported.In theTaylor problema
newvariantis proposedin whichanangleof obliquity is included in theimpactsothattheresponseis
not rotationally symmetric. We concludewith some remarks on the performanceof the methodand
suggestions for future work.

2. GOVERNING EQUATIONS

Kinematics

We considera three-dimensional bodyb which is anopensetin the EuclideanspaceR3. The body
consists of material points X. The material points can be identified with co-ordinatesin a fixed
Cartesiansystem,with basisvectorsek; k � 1; 2; 3, in a referenceconfigurationb0, i.e. thematerial
point X is identifiedwith thepositionvector X �

P

k Xkek . TheCartesianco-ordinatesystemek will
beusedexclusively, bothfor thereferenceandfor thecurrentconfigurations.Because of thefact, the
distinction between covariant andcontravariantcomponentsis superfluous.

Themotion of thebodyb is describedby themappingx; x � x�X; t�, wherex is theco-ordinateof
the material point X in the currentconfiguration, x � xkek .

The velocity and acceleration of a material point are obtained by material differentiation with
respect to time as v�X; t� � @x�X; t�=@t and a�X; t� � @

2
x�X; t�=@t2. The deformation gradientF is

defined by usingthe operatorHH0
� �@���=@Xk�ek asF � HH

0

 x � �@wi=@Xj�ei 
 ej.

Conservationequations

We aredealingwith a purelymechanicaltheory of continuousmedia.Thebasicequationsarethe
conservation of mass,

r0
� r det F; �1�

andenergyconservation,

r0 @e

@t
� P :

@F
@t

; �2�
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where e is the internal energyper unit mass, P is the first Piola–Kirchhoff stresstensorand the
operator ‘ :’ is a simultaneouscontraction on both indices, defined for tensorsp � pijei 
 ej and
q � qijei 
 ej asp : q � pijqij. The conservation of linear momentum gives

r0a � r0b � HH
0
? P; �3�

where b is the body force per unit mass,andthe conservation of angular momentum yields

F ? PT
� P ? FT

: �4�

The governing systemof equations is completedby constitutive equationswith appropriate strain
measures.

Boundaryand initial conditions

The boundary conditions can be specifiedas any combination of prescribeddisplacementson
@

d
b

0,

u�X; t� � �u�X; t�; X 2 @
d
b

0
; �5�

andprescribedtractionson @
t
b

0,

P�X; t� ? n0
�X� � �t�X�; X 2 @

t
b

0
; �6�

where @
d
b

0 and@
t
b

0 correspond to disjoint subsets of the boundary @b
0
; @b

0
� @

d
b

0S
@

t
b

0.
Thesolution is soughtgiven theinitial conditions,which specifytheinitial velocity andstressesin

b
0, i.e.

v�X; 0� � �v�X�; X 2 b
0
; �7�

P�X; 0� � �P�X� � s�X; 0�; X 2 b
0
; �8�

where s is the Cauchystresstensor,which in the referenceconfigurationis identical with the first
Piola–Kirchhoff stresstensor.

Virtual work principle

The discreteformulation is obtainedfrom the weakform, the principle of virtual work. It canbe
stated on the referenceconfiguration b0 (i.e. in the material setting) in terms of the dependent
variable u 2 u andthe first Piola–Kirchhoff stresstensorP as

�

b
0
r0a ? du dV �

�

b
0
r0b ? du dV ÿ

�

b
0

P :HH0

 du dV �

�

@b
0
du ?

�t dA; �9�

whereb0 is the referencedomain,r0 is the mass density in the referencedomain,a is the material
acceleration and du 2 u0 is the virtual displacement, with u � fuju�X; t� 2 C0

; u�X; t� � �u for
X 2 @

d
b

0
g andu0 � fuju�X� 2 C0

; u�X� � 0 for X 2 @
d
b

0
g.

Element-freeGalerkin approximation

The motion parametersof the material point X, i.e. the current co-ordinatex (or displacements
u � x ÿ X), velocity v andaccelerationa, areapproximatedin theEFGmethodby using themoving
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least squares7 shapefunctionsfI �X� as

u�X; t� �
P

I
fI �X�uI �t�; �10a�

v�X; t� �
P

I
fI �X�vI �t�; �10b�

a�X; t� �
P

I
fI �X�aI �t�; �10c�

We wish to stressthat uI ; vI andaI arenot the nodalvaluesof displacements(velocities,etc.), but
rathernodalparameterswithout a direct physicalinterpretation,becausethe shapefunctionsfI �X�
produce approximation, not interpolation.

The partial derivativeswith respectto the referencingco-ordinatesXk areobtained simply as

@x�X; t�

@Xk
�

P

i

@fI �X�
@Xk

xI �t�: �11�

Substitutionof (10a)and(11) into (9) givestherelationsfor themassmatrix andinternal forcesas

dW int
�

�

b
0

P :HH0

 du dV �

P

I
duI ? f int

I ; �12a�

dW ext
�

�

b
0
r0b ? du dV �

�

@b
0
du ? t0 dA �

P

I
duI ? fext

I ; �12b�

dK �

�

b
0
r0a ? du dV �

P

I;J
duI ? MIJ ? aJ : �12c�

3. CONSISTENCY APPROACH TO MESHLESSAPPROXIMATI ONS

Although the calculationsreportedheredeal with homogeneous bodies with smoothsolutions, the
EFG implementationdescribed here is eventually aimed at problemswith moving discontinuities
suchasshocksor cracks.Therefore,evenfor a total Lagrangianformulation, recalculationof someof
the shapefunctions and their derivatives is unavoidable. We describe here a methodology that
streamlines the calculations.

TheEFGapproximation is formulatedin termsof themoving leastsquaresapproximation (MLS),
but for purposesof fastderivative evaluation it is convenient to describeit asaconsistentversionof a
localized approximation; the final result is identical with the MLS approximation.

Considera weight function with compactsupport w�X ÿ XI � � wI �X� associatedwith nodeI. We
wish to compute the shapefunction fI �X� so asto be able to write an approximation to a function
u�X� in the form u�X� �

P

I fI �X�uI . Since we intend to use the shapefunctions in a Galerkin
procedure for a second-orderproblem, we require the linear consistency equationsto be satisfied.
Theseconsistencyconditionsareautomatically satisfied if

P

I
fI �X� � 1 and

P

I
fI �X�XI � X: �13�

The sumin (13) is over those nodeswhosedomainof influence includes X.
We will construct the shapefunction from the weight function wI �X� by multiplying the weight

function by a correction function7–9 and by enforcing the consistency conditions (13). Thus we
choosefor the shapefunction the form

fI �X� � C�X�wI �X�; �14�

1256 T. BELYTSCHKO, P. KRYSL AND Y. KRONGAUZ

INT. J. NUMER. METH. FLUIDS, VOL 24: 1253–1270 (1997) # 1997by JohnWiley & Sons,Ltd.



where C�X� is the correction function. The correction function will be soughtin the form

C�X� � a�X�Tg�XI �; �15�

where g�X� is acolumnmatrix of m linearly independentfunctions�m5 4 for 3D domains)anda is a
column matrix of m coefficients. The functions g can be chosen to improve approximations; for
example, Fleming et al.10 haverecently usedfunctions corresponding to the asymptotic crack tip
field. Sincein generally theremaybemorefunctionsgi thantherearelinearconsistencyconditions,
equations (13) will be completed to represent reproducibility conditions of the m functions g�X� :

P

I
fI �X�g�XI � � g�X�: �16�

It is obvious that g�X� should include 1; X ; Y and Z to be able to satisfy the linear consistency
requirements.The consistencyconditions (13) canalso be viewedasreproducibility conditions for
1; X ; Y andZ.

The unknown coefficients a can be solvedfor us by using the reproducibility conditionsof the
functions g�X�, i.e. substituting (14) and(15) into (16) gives

P

I
wI �X��g�XI �g

T
�XI ��a�X� � g�X�: �17�

Equation (17) can be cast in a form identical with that arrived at by the moving least squares
technique(comparee.g.with Reference7), i.e.

P

I

P

j
wI �X�gi�XI �gj�XI �aj�X� � gi�X� �18�

or

A�X�a�X� � g�X�; �19�

where A is given by

Aij �
P

I
wI �X�gi�XI �gj�XI �: �20�

The matrix A is symmetric andpositive definite andis oftencalled themomentmatrix. The explicit
expressionsof (14) and(15) andof the matrix A canbe written for a linear basisin one-,two- and
three-dimensional problemsrespectively as

fI �X � � �a0�X � � a1�X �XI �wI �x�; �21a�

A�X � �

P

I
wI �X �

1 XI

XI X 2
I

" #

�

P

I
wI �x�AI ; �21b�

A;X �X � �

P

I
wI ;X �X �AI ; �21c�

fI �X� � �a0�X� � a1�X�XI � a2�X�YI �wI �X�; �22a�

A�X� �
P

I
wI �X�AI ; �22b�

AI �

1 XI YI

XI X 2
I XI YI

YI XI YI Y 2
I

2

6
4

3

7
5; �22c�

A;i�X� �
P

I
wI ;i�X�AI �22d�
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and

fI �X� � �a0�X� � a1�X�XI � a2�X�YI � a3�X�ZI �wI �X�; �23a�

A�X� �
P

I
wI �X�

1 XI YI ZI

XI X 2
I XI YI XI ZI

YI XI YI Y 2
I YI ZI

ZI XI ZI YI ZI Z2
I

2

6
6
6
4

3

7
7
7
5
�

P

I
wI �X�AI ; �23b�

A;i�X� �
P

I
wI ;i�X�AI : �23c�

The shapefunction canbe computedat a given point X by solving (19). The shapefunctions are
thenwritten by combining (19) with (15) and(14) as

fI �X� � �Aÿ1
�X�f�X��Ta�XI �wI �X�: �24�

Theabovederivation is closely relatedto theprocedureof imposingreproducingconditionsby means
of a correction function asproposed by Liu et al.9

Thematrix inversion in (24) is to beunderstoodsymbolically; thematrix A is factorized eitherby
LU or by QR decomposition.The derivativesof the shapefunctionsarecalculatedby an approach
describedin Reference11 which speeds up thecomputations.Therequired equationsareobtainedby
differentiating (14) andby noting that the differentiation of (19) yields

A;ia � Aa;i � g
;i; �25�

where g;i denotes@g=@Xi. Thus we canobtain the derivatives of a;i by solving

Aa;i � g
;i ÿ A;ia: �26�

For thispurpose thefactorizationof A computedwhensolving(19)canbereused,sothecomputation
of the derivatives involves little extracomputation.

The savings in the computation times recordedby the authors for the construction of the EFG
shapefunctionscanbeapproximately 50%in two-dimensionalproblemsandevenmorein 3D cases.
The initial computation of the shapefunctionsat all integrationpoints,which includethe searchfor
the nodeswhich influencea given quadrature point, is about15 timesas expensive as an explicit
update for an elastic material. The savings achievedby the presented techniqueare therefore
significant.

4. IMPLEMENTATION OF THE EFG PROCEDURE

Central differencetime stepping

To advance the solution in time, we havechosenthe centraldifferenceschemein the classical
form.12 In the nth step, given velocities _unÿ1=2 � _u�tn ÿ Dnt=2� and displacementsunÿ1 � u�tnÿ1�

(with the variable time stepDnt � �Dn�1=2t � Dnÿ1;2t�=2�:

1. Calculate velocities at time tn � Dnt=2:

_un�1=2 � _unÿ1=2 � DntMÿ1
? �fext

n ÿ f int
n �:

2. Calculate displacements at time tn�1 � tn � Dnt :

un�1 � un � Dnt _un�1=2:
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The symbolsin the aboveformulaeareM , the mass matrix (constant anddiagonal),un and _un, the
vectorsof displacementsandvelocitiesrespectively, fext

n , theexternal loads,andf int
n , thenodal forces

corresponding to the stresses,all at time stepn.

Stable time step

The stable time stepcanbe computed for an elastic isotropic material undersmall deformations
(this stability estimate is usually applied also to finite deformations) from the smallestdistance
between nodes,dmin, over the speedof a dilatational wave, c �

p

�E=r�1 ÿ 2n�� (E is the Young
elastic modulus andn is the Poissonratio), resultingin

Dt4 c=dmin: �27�

The penalty enforcement of contactwhich is usedin the impactproblemsdiscussedbelow reduces
the stable time step.

Coupling to finite elements

TheEFGshapefunctionscanbemodifiedto mimic ordinary finite element shapefunctionson the
boundary of the EFG domain.14 Thus onecaneitherenforce essentialboundary conditions aswith
regular finite elements or, as will be demonstratedbelow, one can usethis feature to couple EFG
domains to finite elementsin a singlecomputationalmodel.

The basicideais to model the EFGdomainasa finite element,or ratherasa super-elementsince
thereareinternaldegreesof freedominvolved. TheEFGsuper-element interactswith the restof the
mesh throughfinite elementnodeslocatedat theinterfacesbetween theEFGdomain andtheadjacent
finite elements.An example of the incorporation of anEFGsuper-elementis given in Figure 1. The
coupling technique requiresthat EFG nodesbe placedat the verticesof the integrationcells at the
interfacebetweenthe super-element and other finite elements.TheseEFG nodesthen havea dual
identity: theyarebothEFGnodes(asseenfrom thepoint of view of theEFGdomain)andFE nodes
(asseenfrom thepoint of view of theadjacentfinite elements) (they aremarkedin Figure 1 by both
crossesand circles). In what follows, the EFG nodeswhich are not involved in the coupling are
denotedaspureEFGnodes(thesearemarkedby crossesonly). Theintegrationcellswhich haveone
or more dual FE=EFG nodes at their verticesare called interfacecells. The shapefunctions are
modified in theinterfacecells to betheregularFE shapefunctionsat a partof thecell boundary. One

Figure1. EFG super-element in an FE domain
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importantimplicationof this is thattheshapefunctionsin theinterior of theinterfacecellsareablend
of finite-elementandEFG shapefunctions.

TheEFGsuper-elementdefinesthemomentum equationsat thepureEFGnodesaslocal. In other
words,it hides theseequationsfrom therestof thecomputationalmodel.Theseequationsneedto be
advanced in time, however, and the simple loops over finite elementsand finite elementnodesto
update the configuration,computethe internal forces,etc. must be augmentedby loopsover super-
elementsto allow themto performtheneeded operationson their local (private)degreesof freedom.
Thus,for example, theeffective nodalforcesin thecentraldifferencealgorithm arein ordinary finite
elementprogrammescomputed in an element loop suchas

FOR(all loads L in domain D) {assemble_ext_loads(D, L);}

FOR(all elements E in domain D) {assemble_restoring_forces(D, E);}

Programmesimplementingsuper-elementsshouldaugmentthe codeof the abovefragmentby

. . .

FOR(all super-elements SE in domain D) {calc_eff_loads(D, SE);}

to allow the super-element to assembleexternal and restoring forcescorrespondingto the internal
degreesof freedomof the super-element.

Discretization of the EFG domain

Geometryapproximation.The geometry of the EFG domainin the present work is approximated
by a collection of hexahedral cells. The FE=EFG coupling requires that cells placed along the
boundariessharedwith finite elements(so-called ‘in terfacecells’) be compatible with the adjacent
finite elements.Otherwise the geometric subdivisioninto cells is quite arbitrary. Thusthe cells may
begeneratede.g.by octrees, multiblock meshgeneratorsor directly from thegeometric components
constituting a CAD model.

Placementof EFG nodes.Thenodesaregeneratedindependently of the integrationcells,with the
exception of the interfacecells wherethe EFG nodesmust be presentat the verticesto definethe
rampfunction.14

Volumeintegrals.Thevolume integrals(massmatrix, restoring forces)areobtainedby usingeither
regular Gaussian quadrature or special two-point diagonal quadrature15 at the Gauss points
xi � ÿ1=

p

3 and 1=
p

3. Our experience with the quadratureschemesuggeststhat a lower order-
quadrature(one-point or 26262 in hexahedral cells)with smaller cellsmaybepreferableto larger
cells with high-orderquadrature.The reasonseemsto bethequitecomplicatedvariation in theshape
function derivatives,which makes it difficult to integratethem by the usual high-order Gaussian
quadrature.

Surface integrals. The surfaceintegrals(load, contacts)are evaluatedindependently of the cell
structure.

Sizeof the domain of influence.The choice of the sizesof the supports (domainsof influence) is
quitecrucial.Fromthepoint of view of thecomputation coststhesupports shouldbechosenassmall
aspossible, sincethe time to compute anykinematic quantity(deformation gradients, straintensors,
etc.) is proportional to thenumberof nodesaffectingeachintegrationpoint.Forexample,in a regular
cubic grid with spacing a in eachdirection theradii of circular domains of influencearechosen to be
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a multiple of the lengthof thediagonalof thecube,
p

3a. The integration cells arethecubeshaving
thenodesasvertices.Theaveragenumberof nodesat anintegrationpoint for a26262 quadrature
is 20 for dm �

p

3a, 59 for dm � 1�5 �
p

3a and124for dm � 2 �
p

3a. Thecomputingtime within
a stepgrowscorrespondingly in the ratios1:2�95:6�2:

Fromthepoint of view of accuracy thereis anoptimum supportsize.Unfortunately, theoptimum
is not easyto computeand,in addition, it varieswith thecharacteristics of theproblemat hand;see
the discussion for fourth-order problems by Krysl and Belytschko.16 The readershould realize,
however, that only absolute accuracyis involved, not the rate of convergence.

Mass matrix. To exploit the potential speedof the explicit time-stepping technique, the mass
matrix should bediagonal. We havecomputed themass matrix by therow sumtechnique.The mass
matrix of the Ith EFGnodeis a multiple of theunit matrix, MI � MI 1. Because theshapefunctions
of all EFG nodalpointsaffecting a given point sumto one, i.e.

P

I fI � 1, the factors MI canbe
computedas

MI �

�

b
0
r0fI dV : �28�

It shouldbenoted that the factors MI areindependent of material deformation andconsequently the
mass matrix is constantin time.

Internal forces.The EFG methodseemsto be free of numerical locking both for bendingandfor
almostincompressible materials suchaslarge-strain plasticity andrubberhyperelasticity. This means
that the kinematic relations neednot be modified in order to avoid it as, for example, in finite
elementsintegratedby a reduced or selective scheme(stabilized, finite elements),17 enhancedstrain
finite elements,18 etc. This makesthe task of defining a material modelfor usewith the EFG super-
elementappealingly simple.Thekinematicquantitiesarecomputedby straightforwardsubstitution of
(10a)and(11) into the appropriatedefinition of the kinematic tensor(deformation gradient, rateof
deformation, Green–Lagrangestrain tensor,etc.). Thus the interfacebetween the integration point
andthe material model is very simpleandallows for any material.

Therestoring forcesarecomputed from equation (12a). As canbeseen,in orderto beableto usea
particular materialmodel with the EFG domain,the material model must be able to computeat a

Figure2. Definition of penetratedhalf-spaceasa Winkler foundation
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given time thefirst Piola–Kirchhoff stresstensor.Theresulting internal forcesareassembledeitherto
the internal equations for purely EFG nodesor to the global equations for EFG=FE nodes.

Material laws.TheTaylor barimpactssimulationsin this paperwerebasedon theassumption that
the material is elastoplastic with linear hardening, with the classicalJ2 flow rule. The stressupdate
procedure is basedon the methodof instantaneousfinal rotationof Nagtegaal andVeldpaus.19

Bending andincompressibilitylocking. It is a well-known fat thattheeight-noded,fully integrated,
isoparametricfinite element locks for incompressiblematerialsandalso tends to produceover-stiff
responsein bending.Previousnumerical experiments indicate that theEFGmethodis not susceptible
to numericallocking for almostincompressible materials and is not excessively stiff in binding.2

TheEFGshapefunctionsareof relatively high orderwhenthesupportsarelarger.This makesthe
approximation less constrained and is probably the reasonfor the absenceof locking. On the other
hand, it is well known that the EFG shapefunctions resemble the regular finite element shape
functionsfor smallerdomainsof influence,althoughthefinite elementshapefunctionsarein general
not recoveredfor morethanone-dimensional spaces.As aconsequence,onewouldexpect difficulties
with locking. However, asour numericalexperiments show,this is not the case. It canprobably be
explainedasfollows. Consideringagaintheaboveregularcubic grid, thesmallest possibleradiusof a
spherical domain of influence is dm �

p

3a; smaller domains of influence usually give badly
conditioned shapefunctions and it becomesimpossibleto construct the shapefunctions at some
locations. The resulting approximation is still much less constrained than for hexahedral, fully
integratedfinite elements, sincean integration points still has 20 neighbouring nodeson average,
whereasthereareonly eight neighbours for any integration point in the trilinear finite elements.

Locking for large-strain plasticity may actually appear in the interfacecells between the EFG
subdomain and the finite elements. The reason is that if a trilinear ramp is usedto blend the finite
element shapefunctions and the EFG shapefunctions, the shapefunctions in the interior of the
interfacecells are rathersimilar to the regularfinite element shapefunctions,which are known to
produce an over-stiff response.

Parallelization. The EFG super-elementhas been integrated into a finite elementprogramme
which hasbeenparallelized by theauthorsfor workstation andsupercomputernetworksasdescribed
in Reference20.The domaindecomposition usedin Reference20 is basedon finite elementsandthe
EFGsuper-elementcanbeincludedin thefinite elementmodelwithout anymodification.However,it
is possible thata needmight ariseto assigntheEFGdomainto morethanonecomputer,e.g.when it
is too largeto fit ontoa singlemachine.Thesolution could beto split theoriginal EFGsuper-element
into two or moresuper-elementsby introducing interfaces.This is not alwaysfeasiblein large-strain
plasticity with respect to locking, however; seethe preceding section.

Nevertheless, sincethe EFG super-elementsarecurrently moreexpensive thanhigh-performance
finite elements,especically one-pointquadraturestabilized elements, it is assumedherethat theEFG
domains will be usedsparingly, i.e. only where their high accuracyand special capabilities are
needed. In that case the EFG domains can be assumed to be of limit ed size and the domain
decompositionbasedon finite elementsmay be consideredappropriate.

5. APPLICATIONS

Sloshing in two dimensions

We consider the problem of a tank filled with waterthat hasan initial velocity v0 � 1 m s71 in the
positive x-direction at time zero.The configuration is shownin Figure3.
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Thewaterwasmodelledasinviscid,sotheLagrangianequation of motion describing theproblem
is

ÿp;i � rbi � rai; �29�

where bx � 0 andby � ÿg. The material model usedis

_p �

k

r
_r; �30�

where

_r � ÿrHH ? v: �31�

The bulk modulus k is 2 GPa.The density of the water is takento be 1000 kg=m3.
The problem was solved using 496 nodes and 1800 quadrature points. An explicit central

difference schemewas used for integration in time. The time step was therefore limit ed by
conditional stability; a time stepof 0�2 ms wasused.The solutionwasadvanced to 2�8 s by taking
14,000 time steps.Someof the variousintermediate statesareplotted in Figure4.

Taylor bar impact

The EFG methodwasapplied to 3D dynamicproblems of finite strain elastoplasticdeformation.
The Taylor bar is a classicalbenchmark which consistsof a cylindrical bar impacting a rigid,
frictionless wall.21,22 The contacting surfacesare assumedto remain in contact throughout the
simulation.Thematerial datacorrespondsto copperandthecomputational modelis classicalJ2 flow
with linear isotropic hardening: E� 117 GPa, n� 0�35, r� 8930kg m73, h� 100 MPa,
sy0 � 400 MPa. The radius of the cylinder is 3�2 mm and its length is 32�4 mm. The cylinder
moves with a uniform initial velocity of 227 m s71. The responseis computedfor 80 ms; at theend
of this interval thekinetic energyis almostentirely dissipated. Themonitoreddataarethe radiuson
the plane of impact, the cylinder lengthandthe equivalent plasticstrain.

Normal impact. We havesolvedtwo problems.In thefirst the impactis symmetricwith respect to
theimpactplane.Thusthemodelconsistsof two barsimpactingeachother with thesamevelocity in
opposite directions. The grid for this simulation wasquite coarse.Figure 5 showsthe cross-section
with integration cells and EFG nodes (as X-markers). Twenty layers of the cells and nodes
constituted half of the symmetric grid, giving 800 nodes (2400 degreesof freedom) and 480
hexahedral integrationcells for the whole model. Spherical supports with a uniform support sizeof
dm � 4 mm were used.The material responsewas computed by the instantaneous final rotation
methodof Section4 at the Gausspoints.One-point quadraturewasused,with the exception of five

Figure3. Tank filled with waterwith initial velocity
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